Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Handb Exp Pharmacol ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2285539

ABSTRACT

The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.

2.
Pharmaceutics ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2043903

ABSTRACT

The higher-order structure (HOS) of protein therapeutics has been confirmed as a critical quality parameter. In this study, we compared 2D 1H-13C ALSOFAST-HMQC NMR spectra with immunochemical ELISA-based analysis to evaluate their sensitivity in assessing the HOS of a potent human monoclonal antibody (mAb) for the treatment of coronavirus disease 2019 (COVID-19). The study confirmed that the methyl region of the 2D 1H-13C NMR spectrum is sensitive to changes in the secondary and tertiary structure of the mAb, more than ELISA immunoassay. Because of its highly detailed level of characterization (i.e., many 1H-13C cross-peaks are used for statistical comparability), the NMR technique also provided a more informative outcome for the product characterization of biopharmaceuticals. This NMR approach represents a powerful tool in assessing the overall higher-order structural integrity of mAb as an alternative to conventional immunoassays.

3.
PLoS Pathog ; 18(4): e1010443, 2022 04.
Article in English | MEDLINE | ID: covidwho-1892330

ABSTRACT

Metabolomics and lipidomics have been used in several studies to define the biochemical alterations induced by COVID-19 in comparison with healthy controls. Those studies highlighted the presence of a strong signature, attributable to both metabolites and lipoproteins/lipids. Here, 1H NMR spectra were acquired on EDTA-plasma from three groups of subjects: i) hospitalized COVID-19 positive patients (≤21 days from the first positive nasopharyngeal swab); ii) hospitalized COVID-19 positive patients (>21 days from the first positive nasopharyngeal swab); iii) subjects after 2-6 months from SARS-CoV-2 eradication. A Random Forest model built using the EDTA-plasma spectra of COVID-19 patients ≤21 days and Post COVID-19 subjects, provided a high discrimination accuracy (93.6%), indicating both the presence of a strong fingerprint of the acute infection and the substantial metabolic healing of Post COVID-19 subjects. The differences originate from significant alterations in the concentrations of 16 metabolites and 74 lipoprotein components. The model was then used to predict the spectra of COVID-19>21 days subjects. In this group, the metabolite levels are closer to those of the Post COVID-19 subjects than to those of the COVID-19≤21 days; the opposite occurs for the lipoproteins. Within the acute phase patients, characteristic trends in metabolite levels are observed as a function of the disease severity. The metabolites found altered in COVID-19≤21 days patients with respect to Post COVID-19 individuals overlap with acute infection biomarkers identified previously in comparison with healthy subjects. Along the trajectory towards healing, the metabolome reverts back to the "healthy" state faster than the lipoproteome.


Subject(s)
COVID-19 , Edetic Acid , Humans , Lipoproteins , Metabolomics/methods , SARS-CoV-2
4.
Front Mol Biosci ; 9: 839809, 2022.
Article in English | MEDLINE | ID: covidwho-1817986

ABSTRACT

1H NMR spectra of sera have been used to define the changes induced by vaccination with Pfizer-BioNTech vaccine (2 shots, 21 days apart) in 10 COVID-19-recovered subjects and 10 COVID-19-naïve subjects at different time points, starting from before vaccination, then weekly until 7 days after second injection, and finally 1 month after the second dose. The data show that vaccination does not induce any significant variation in the metabolome, whereas it causes changes at the level of lipoproteins. The effects are different in the COVID-19-recovered subjects with respect to the naïve subjects, suggesting that a previous infection reduces the vaccine modulation of the lipoproteome composition.

5.
PLoS Pathog ; 17(2): e1009243, 2021 02.
Article in English | MEDLINE | ID: covidwho-1058312

ABSTRACT

The current pandemic emergence of novel coronavirus disease (COVID-19) poses a relevant threat to global health. SARS-CoV-2 infection is characterized by a wide range of clinical manifestations, ranging from absence of symptoms to severe forms that need intensive care treatment. Here, plasma-EDTA samples of 30 patients compared with age- and sex-matched controls were analyzed via untargeted nuclear magnetic resonance (NMR)-based metabolomics and lipidomics. With the same approach, the effect of tocilizumab administration was evaluated in a subset of patients. Despite the heterogeneity of the clinical symptoms, COVID-19 patients are characterized by common plasma metabolomic and lipidomic signatures (91.7% and 87.5% accuracy, respectively, when compared to controls). Tocilizumab treatment resulted in at least partial reversion of the metabolic alterations due to SARS-CoV-2 infection. In conclusion, NMR-based metabolomic and lipidomic profiling provides novel insights into the pathophysiological mechanism of human response to SARS-CoV-2 infection and to monitor treatment outcomes.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 Drug Treatment , Lipidomics , Lipids/blood , SARS-CoV-2/metabolism , COVID-19/blood , COVID-19/epidemiology , Female , Humans , Male , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL